
ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 5, May 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2521 98

Understanding Developer Relations in FOSS

Ecology using SNA Parallelization Technique

Poornesha B D
1
, Sujay Shalawadi

2

M S Ramaiah Institute of Technology Bangalore, India
1,2

Abstract: Social network analysis aims at understanding the organization of a social network at various levels. This

paper involves analysis of BigData related to social interaction among developers in Free and Open Source Software

ecosystem. The analysis involves spotting influence, predicting future links and Clustering entities. The analysis was

first made sequentially. However, as the size of the data kept increasing sequential computing was inefficient. In this

paper, the analysis has been taken forward in parallel implementation on multi-node Hadoop cluster to improve

computation time. Effective performance benefits have been achieved by considering the terms that affect the

performance.

Keywords: Influence, Link Prediction, Proximity measure, Spanning Tree, Clique, Purity.

I. INTRODUCTION

There has been constant research in the field of graph

mining with respect to massive data sizes. The main

questions that are trying to be answered are how do we

find patterns of data that have billions of entities or the

sheer size of data runs in terabytes or petabytes. Specially

in the study of social network analysis where there are

enormous number of interactions being done at regular

intervals of time, we need to scale up our

computational resources efficiently in order to study the

patterns of these ever growing communities.

In this paper, we have taken the data from

SourceForge.net, which is a source code repository and is

the first to offer this service to the Free and Open Source

Software (FOSS) community [1]. The analysis involves

finding patterns among developers interacting while

collaborating their work of research. We have made use of

graph mining concepts to find the influential nodes,

predict future links and form clusters of most similar

developers utilizing a distributed network with help of

Hadoop and R[15] to improve the scalability with respect

to increase in size of data which was a major drawback

with sequential computation.

II. RELATED WORK

The first idea of analysis of FOSS data originated in 2002

by Gregory Madey, where the developer projection

interaction was defined and has been gaining attention[2]

and there has been advances in the analysis where the

methods of communication between developers have also

been defined by the year 2005[11][12].

A study from Syeed and Hammouda in the year 2014

explains the many developers will be working on the

FOSS projects, tracking resembling open source projects

by exploiting the information of which developers

contribute to which projects [3]. Social network study to

analyze data and resemble with respect to properties such

as project application domain, programming language

used and project size.

Social network analysis using graph mining as the

principle to finding patterns is not just limited to FOSS

community but is used extensively in other fields such as

viral marketing, social networking sites, computational

biology to name a few. The use of graphs as way of

representing the data sets is beneficial specially for

unsupervised and semi-structured data [4].

The analysis of big data using graph mining can be termed

as big graph mining. The principle of graph mining has

provided good results in answering questions like what are

the distinguishing characteristics of the graph?, are there

any patterns in the graph? and how do these graphs evolve

over time?

III. SOCIAL NETWORK ANALYSIS USING GRAPH MINING

TECHNIQUES

The concepts made use are PageRank for spotting

influence, Proximity Measure for Link Prediction and

Graph Based Clustering.

A. PageRank

In a social network, the graph of relationship and

interaction within a group of individuals plays a important

role as a medium for the spread of ideas, information

among its members [5]. Influence maximization is the

problem of finding a small subset of nodes i.e. seed nodes

in a social network that will maximize the spread of

influence [6]. Influence node depends on the few

parameters like connectedness of a node, priority and

position of a node in social network.

The use of PageRank algorithm was inspired for its ability

to rank web pages in linked web page structure. We

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 5, May 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2521 99

wanted to make use of the same concept on the FOSS data

set by representing developers as web pages and using the

interactions between them to rank them accordingly[7]. It

is based on the random walk process of PageRank

equation as shown below, where d is the damping factor

which can be set between 0 and 1, PR(N) is the PageRank

of page A, PR(Ti) is the PageRank of page Ti which link

to page N and C(Ti) is the number of outbound links on

page Ti.

Table 1 shows the most influential nodes in a dataset,

using this approach we can find out the most influential or

centralized-coordinated developer of the projects.

Table 1: Top 5 Influential Developer ID’s in the dataset.

Influential developer ID’s Rank

1562343 1

3359051 2

3134053 3

3119739 4

2935535 5

B. Link Prediction

In a Link Prediction method, its possible to identify the

new interaction between the developers who have never

interacted before. When a Link Prediction is applied to

developer-developer relation dataset, it predicts the

relation that occurs in the future based on the developers

interests in particular type of projects. There are few

efficient measures which are introduced for choosing the

feature set like proximity feature [8]. We have made use of

similarity proximity measure where the number of mutual

neighbors determine the probability of future links[7].

Higher the mutual neighbors, the future is most likely to

occur. Based on an analysis, the accuracy of the similarity

measure was higher than the dissimilarity measure.

Therefore, similarity measure with correlation.

Data: Rawdataframe.

Result: Predicted list of Edges.

Step 1: Convert Rawdataframe into graphs.

Step 2: Convert Graph into a matrix.

Step 3: Use the matrix to compute proximity

 matrix so that an adjacency matrix is formed.

Step 4: Normalize values in the adjacency matrix

 between 0 and 1.

Step 5: Apply threshold of 0.75 if similarity is used and

 0.25 if dissimilarity measure is used.

Step 6: Retain values above 0.75 and below 0.25 for

 similarity and dissimilarity respectively.

 Step 7: Extract corresponding row and column values

 which will give the list of the predicted edges.

 Algorithm 1: Graph Processing for Input data

Below are the results of Link Prediction for FOSS

developer-developer data set taken for our analysis:

 Total number of predicted links = 14203

 Number of links involving influential nodes =

4457

 Percentage of probable links from the influential

nodes = 32\%

As per the threshold set as 75%, the social network is

bound to grow 32% as per the existing relationship

between developers.

C. Graph Based Clustering

The various information that could be generated using the

graph cluster methods are the number of developers in the

data set, number of clusters formed, minimum and

maximum number of developers, average number of

developers in the cluster, the average number of

developers in a cluster can be calculated for only those

methods where the developer IDs don't repeat themselves

in more than one cluster. The reason for this is the count of

the developers in all the clusters greatly exceeds the value

of the total number of developers of the data set.

The clustering process should also be evaluated to check

for the performance, so the purity of clustering is checked.

Purity is defined as number of cluster containing average

number of developers by number of cluster not containing

average number of developers. This measure can only to

be used on a method where the average number of

developers in a cluster can be calculated. The value of

purity of clustering will be in the range of 0 to 1. Value

closer to 1 indicates good clustering and the values closer

to 0 indicate the poor clustering.

1. Highly Connected Subgraph(HCS) Clustering:

The input will have to be given with a predefined cut

threshold. The cuts are made on the graph iteratively to

form many clusters that satisfy the condition that the

number of edges is greater than half the number of

vertices[9][19].

Data: G(V,E), t

Result: Set of HCS cluster of dataset

while i <= t

do

 if K(Hi) > n/2 then

 RESULT<-Hi;

 else

 goto HCS(Hi);

 end

end

Algorithm 2: Highly Connected Subgraphs Clustering.

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 5, May 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2521 100

Below are the analyzed results of the HCS clustering.

 Total number of developers in the dataset =

14374

 Total number of developers interaction in dataset

= 35305

 Total number of clusters formed = 3851

 Minimum number of developers in a cluster = 1

 Maximum number of developers in a cluster =

176

 Average number of Developers in a cluster = 3.73

 No of cuts specified is = 3

 Number of clusters with average number of

developers = 827

 Purity of the clustering algorithm = 0.275

The variation between the maximum number of

developers and minimum number of developers in a

cluster is low and hence its purity value is better than the

other algorithms. The clusters are formed with developers

only if a developer has a mutual friend with all the other

developers in the cluster.

2. Maximal Clique Enumeration

The concept is mainly used to form clusters such that each

developer is connected to all other developers in that

cluster. The clique becomes a Maximal Clique only if it

does not form a subset of bigger clique[10].

Data: G (V;E)

Result: Set of Maximal Cliques involving all

 Developers

Step: C=0

 foreach v in V of G(V,E)

 do

 find a clique c with vertex v

 remove all edges in c from G and c to C

 done

Algorithm 3: Maximal Clique Clustering

Below are the analyzed results of the Maximal Clique

Enumeration clustering.

 Total number of developers in the dataset =

14374

 Total number of developers interaction in dataset

= 35305

 Total number of cliques formed = 6362

 Minimum number of developers in a clique = 2

 Maximum number of developers in a clique = 18

The average number of developers in a clique cannot be

found because the developers repeat themselves in

different cliques. All the maximal cliques formed are

unique, i.e. the same sets of developers in one clique are

not repeated in another clique. Maximal Clique shows the

neighbors of developer connected each other in a network.

3. K - span Clustering.

A minimum spanning tree (MST) is obtained where all the

lesser weighted edges are appropriately cut off using the

theory of Prim’s algorithm [11]. The MST is used as

where k-1 highest weighted edges are cut off to form

clusters [12].

Data: G(V,E), K

Result: K number of Clusters.

Step 1: Applying PRIMS to get

 MST P(V,E) <- G(V,E)

Step 2: Removing K-1 highest weighted edges

 from P(V,E).

Step 3: C={C1...Ck} K clusters formed from

 step 2

Algorithm 4: KSpan

Below are the analyzed results of the Kspan clustering.

 Total number of developers in the dataset =

14514

 Total number of developers interaction in dataset

= 33344

 Total number of clusters formed = 1135

 Minimum number of developer in a cluster = 1

 Maximum number of developer in a cluster =

7089

 Average number of Developers in a cluster =

12.78

 Number of cuts specified = 4

 Purity of the clustering algorithm = 0.0862

Kspan shows that how effectively a developer can reach

all other developers in a network for communication with

less weight or cost.

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 5, May 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2521 101

4. Betweenness Centrality

Betweenness Centrality quantifies the degree to which a

vertex or edge occurs on the shortest path between all the

other pairs of nodes [13][17]. It helps to get the more

precise rank of the developers. It has two variations

4.1 Vertex Betweenness:

It is the number of shortest paths in the graph G that pass

through a given node [13][17]. The centrality of each node

is calculated using the degree count of the nodes. The

highest centrality of the measured node will be identified

and the graph will be split. Clusters are formed until the

centrality measure of the highest node in the cluster is less

than the specified centrality threshold.

Below are the analyzed results of the Vertex Betweenness

clustering.

 Total number of developers in the dataset =

14374

 Total number of developers interaction in dataset

= 35305

 Total number of clusters formed = 6346

 Minimum number of Developers in a cluster = 2

 Maximum number of Developers in a cluster =

115

Threshold Specified=0.2

Threshold = 0.2 means that a cluster will be formed only if

the highest centrality in the cluster corresponding to a

developer is less than the threshold. The developers are

repeated so the average number of developers cannot be

found.

4.2 Edge Betweenness:

It is the number of shortest paths in the graph G that pass

through given edge. The centrality is calculated for every

edge based on the betweenness in the graph [14][18]. The

process is similar to the Vertex Betweenness clustering.

Below are the analyzed results of the Edge Betweenness

clustering.

 Total number of developers in the dataset =

14374

 Total number of developers interaction in dataset

= 35305

 Total number of clusters formed = 1032

 Minimum number of developers in a cluster = 2

 Maximum number of Developers in a cluster =

9623

 Average number of Developers in a cluster =

13.92

 Purity of the clustering algorithm = 0.00321

Threshold Specified=0.2

Threshold=0.2, which means that a cluster will be formed

only if the centrality in the cluster corresponding to a pair

of developers is less than the threshold. The developers are

not repeated hence the average number of developers

working on a project together can be found. The variation

between the clusters containing maximum and minimum

developers is large hence the purity is very low. Purity of a

cluster is inversely proportional to the variation between

the maximum and the minimum clusters containing the

developers.

Betweenness helps in identifying centralized edges and

vertices which helps to connect the other subgraphs of a

network. These edges and vertices play an important role

in connectedness of network.

IV. PERFORMANCE MEASURE

A. Experiment 1:

Experiments was carried out with RHadoop application

cluster with one master and four slaves of computer

systems, each system has Intel Core i5 quad core

processor i.e. each system has four cores with 4GB RAM

and average load of the system is balanced between 3.5 to

4.4. We have performed two experiments, one with the

variable number of slaves/systems with constant file size

and another with constant number of slaves/system with

variable number of file size. First experiment carried out

with constant file size and with the variable number of

slaves. The time of execution is measured for each

operation as shown in the Table 2

Table 2: Variable number of slaves with constant file size

RHADOOP RESULTS

Execution Time(Seconds)

Technique

Number of slaves

1 2 3 4 5

PageRank 11 10 10 9 10

Prediction 14101 13025 6740 6837 6752

HCS 911 630 448 498 502

Clique 70 71 67 65 66

Kspan 16 16 13 14 13

Betweenne
ss

673 496 363 378 367

From the Table 2, Clique, Kspan and PageRank data

mining technique completed in almost constant amount of

time for variable number of slaves and it also confirm that

only one slave is enough to compute these technique and

HCS, Link Prediction and Betweenness completed in

variable amount of time.

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 5, May 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2521 102

Figure: 1. Link Prediction performance for

 variable number of slaves.

Figure: 2. HCS cluster performance for variable

 number of slaves

Figure: 3. Betweenness performance for variable

 number of slaves

As shown in the Figure 1, 2, and 3 as the number of slaves

increases in a cluster, the time of execution decreases. At

slaves 4 and 5 we can observe that time of execution of

HCS, Link Prediction and Betweenness increases because

of the communication delay between the slaves means if

we start adding number of slaves to the cluster, the

performance of the application degrades and will not result

in any improvement in terms speed of execution

B. Experiment 2:

Second experiments carried out with the constant number

slaves in a cluster, that is three slaves in a cluster and with

the variable file size. The time of execution is measured

for each operation. From the below Table 3, We can

confirm that as the size of the file increases time of

execution also increases for the constant number of slaves

in a cluster. From the Figure 4, 5 and 6, we can confirm

that as the file size increases, the execution time will

increases almost linearly for this dataset.

Table 3: Variable file size with constant three slaves
RHADOOP RESULTS

Execution Time(Seconds)

Technique

File Size in KiloBytes

100 200 300 400 500

PageRank 10 10 11 11 10

Prediction 611 328

9

510

8

6165 6740

HCS 165 231 352 408 448

Clique 14 35 50 49 67

Kspan 12 14 13 13 13

Betweenness 121 232 298 330 363

From the Table 3, we can confirm that as the size of the

file increases time of execution also increases for the

constant number of slaves in a cluster.

From the Figure 4, 5 and 6, we can confirm that as the file

size increases, the execution time will increases almost

linearly for this dataset.

Figure: 4. Link Prediction performance for

variable file size

Figure: 5. Highly connected Subgraph

performance for variable file size.

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 5, May 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2521 103

Figure: 6. Betweenness performance for

 variable file size

As the file size increases, in this case from 100kb to 500kb

the actual time taken for execution varies the most with

the linear value. This difference reduces gradually and

remains constant for 200kb and 300kb. The difference

reduces to half for 400kb and further reduces for 500kb. It

can be inferred that as the data size increases, the

difference will become negligible which shows the

adherence to linear increase of execution time for larger

data sets.

The equation of the approximated linear line and constant

difference between any ith and (i+1)th operation for the

given values as shown in the below Table 4.

Table 4: Approximate linear equation and constant

difference for ith and (i + 1)th iteration.

Technique Linear equation

y= mx+c

Difference

Prediction y=15.13x-157.6 1513

HCS y=0.763x+89.9 76.3

Betwenness y=0.582x+94.2 58.2

Give the execution time of varying data sizes the

execution time of ith data size has a relationship with

(i+1)th value as given below.

(i + 1)th Execution Time = (i)th Execution Time *

(1+Percentage of increase or decrease)

V. CONCLUSION

SNA is gaining attention due to the growth of online social

network interactions and exploring of information

involving such interactions. The main concern is analyzing

the interactions of the social network, fetch and understand

the hidden information and perform a knowledge

discovery on the FOSS data.

Influence spotting in the network are found effectively

using a PageRank algorithm and most influential

developers are found. future links can be found using a

Link Prediction algorithm for the developer-developer

relation dataset. Clustering is done using HCS, Kspan,

Maximal Clique and Betweenness Centrality techniques to

gain more insights such as average number of developers

working together, maximum number of developers

working together, minimum number of developers

working together.

As part of the environment performance, our study

confirms that increase in size of the file increases the time

of execution for constant number of slaves and if we add

more number of slaves to cluster, there will be a

performance degradation in the environment because of

communication delay between the slaves/systems and

another study confirms that as the data size increases,

there is a linear increase of execution time for larger data

sets.

Many data mining techniques used aims at deriving useful

information from the dataset containing very basic

interactions among developers. Analyzing such data for

more information like the top active developers in the

entire network, predicting the possible interests of the

developers based on their history, grouping the developers

together to analyze betweenness and to find the groups

with similar interests of developer.

VI. FUTURE WORK

The first area is to re-design the big graph analytic

platform to provide fast and scalable computation

infrastructure. A challenge for the direction is to balance

the speed and scalability. MapReduce is a disk based

system, and thus it is scalable and robust while it is not

optimized for speed[16].

The second area is to transform existing serial algorithms

into distributed algorithms. A challenge here is to remove

dependency in serial algorithms so that the resulting

distributed algorithms run in parallel [16].

The third area is to improve visualization and

understanding of graphs. A graph forms a complicated

object with many interactions between nodes.

Visualization of graphs helps us better understand the

structure and the interactions in graphs. The challenge is to

effectively summarize the graphs so that users can easily

understand the graphs in a screen with limited resolution

[16].

The work can be continued to be implemented on various

other distributed platforms to check as to what would be

the best choice for graph mining. The work can also be

extended to implementation on Graphical Processing Unit

(GPU) in order to assess scalability.

REFERENCES

[1] Renee Tynan, Vince Freeh and Gregory Madey. Research project on

the free and open source software (FOSS) development

phenomenon, Available at: http://www3.nd.edu/oss/Data/data.html

[online] Last Accessed : 23-Mar-2015.

[2] Vincent Freeh, Gregory Madey and Tynan Renee. The open

source software develop ment phenomenon an analysis based on social
network theory. page 247, 2002.

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 5, May 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2521 104

[3] MM Mahbubul Syeed and Imed Hammouda,Who contributes to

what? exploring hidden relationships between floss projects. In

Open Source Software: Mobile Open Source Technologies, pages
21–30. Springer, 2014.

[4] Tang, Lei and Liu, Huan. Graph mining applications to social

network analysis, Managing andMining Graph Data. pages 487–513,
Springer 2010.

[5] Yajun Wang Wei Chen and Siyu Yang.Efficient influence

maximization in social networks. pages 1–9, 2002.
[6] Ashish Jain, Rajeev Sharma, Gireesh Dixit, and Varsha Tomar. Page

ranking algorithm in web mining, limitations of existing methods

and a new method for indexing web pages. In Communication
Systems and

 Network Technologies(CSNT), 2013 International Conference on, pages

640– 645. IEEE,2013
[7] Rogers, Ian. The Google Pagerank algorithm and how it works. 2002

[8] Tsuyoshi Murata and Sakiko Moriyasu. Link prediction of social

networks based on weighted proximity measures. In Web
Intelligence, IEEE/WIC/ACM international conference on, pages

85–88. IEEE, 2007.

[9] Johnson, Stephen C. Hierarchical clustering schemes, journal
Psychometrika Volume 32, pages 241-254, Springer 1967.

[10] Modani, Natwar and Dey, Kuntal. Large maximal cliques

enumeration in sparse graphs, Proceedings of the 17th ACM
conference on Information and knowledge management.pages1377–

1378, ACM 2008.

[11] Raidl, Gnther R and Julstrom, Bryant A. A weighted coding in a
genetic algorithm for the degree-constrained minimum spanning

tree problem, Proceedings of the 2000 ACM symposium on Applied

computing- Volume 1, pages 440-445, ACM 2000.
[12] Samatova, Nagiza F and Hendrix, William and Jenkins, John and

Padmanabhan, Kanchana and Chakraborty, Arpan. Practical Graph

Mining with R, CRC Press 2013.
[13] Betweenness and centrality, available at:

http://en.wikipedia.org/wiki/betweenness centrality [online] last

accessed : 08-Apr- 2015.

[14] LongJason Lu and Minlu Zhang. Edge betweenness centrality. In

Encyclopedia of Systems Biology, pages 647–648. Springer, 2013.
[15] Vignesh Prajapati. Big data analytics with R and Hadoop. Packt

Publishing Ltd,2013.

[16] Kang, U and Faloutsos, Christos. Big graph mining: algorithms and
discoveries, journal ACMSIGKDD Explorations Newsletter,

volume 14 page 29-36, ACM 2013.

[17] Betweenness and centrality, available at:
http://en.wikipedia.org/wiki/betweenness centrality [online] last

accessed : 08-apr- 2015.

[18] LongJason Lu and Minlu Zhang. Edge betwenness centrality. In
Encyclopedia of Systems Biology, pages 647–648. Springer,

2013.

[19] Hcs clustering, available at: http://en.wiki
pedia.org/wiki/hcsclustering algorithm.

